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Abstract

Background: Spasticity is defined as “a motor disorder characterised by a velocity dependent increase in tonic
stretch reflexes (muscle tone) with exaggerated tendon jerks”. It is a highly prevalent condition following
stroke and other neurological conditions. Clinical assessment of spasticity relies predominantly on manual,
non-instrumented, clinical scales. Technology based solution have been developed in the last decades to offer
more specific, sensitive and accurate alternatives but no consensus exists on these different approaches.

Method: A systematic review of literature of technology-based methods aiming at the assessment of spasticity
was performed. The approaches taken in the studies were classified based on the method used as well as their
outcome measures. The psychometric properties and usability of the methods and outcome measures reported
were evaluated.

Results: 124 studies were included in the analysis. 78 different outcome measures were identified, among
which seven were used in more than 10 different studies each. The different methods rely on a wide range of
different equipment (from robotic systems to simple goniometers) affecting their cost and usability. Studies
equivalently applied to the lower and upper limbs (48% and 52%, respectively). A majority of studies applied
to a stroke population (N=79). More than half the papers did not report thoroughly the psychometric
properties of the measures. Analysis identified that only 54 studies used measures specific to spasticity.
Repeatability and discriminant validity were found to be of good quality in respectively 25 and 42 studies but
were most often not evaluated (N=95 and N=78). Clinical validity was commonly assessed only against clinical
scales (N=33). Sensitivity of the measure was assessed in only three studies.

Conclusion: The development of a large diversity of assessment approaches appears to be done at the expense
of their careful evaluation. Still, among the well validated approaches, the ones based on manual stretching
and measuring a muscle activity reaction and the ones leveraging controlled stretches while isolating the
stretch-reflex torque component appear as the two promising practical alternatives to clinical scales. These
methods should be further evaluated, including on their sensitivity, to fully inform on their potential.
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Background
The definition of spasticity has long been debated in
published studies and amongst clinicians. This defini-
tion has sometime encompassed any increase in mus-
cle tone of various physiological origins, whether they
are constant (and then referred to simply as “tone”,
“hyper-resistance” or “hyper-tonicity”) or are only
velocity-dependent (and in which case are due to an
exaggerated stretch-reflex) [1]. Still, the more com-
monly used definition — adopted in this work — re-
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mains the more specific one proposed by Lance in 1980:
“a motor disorder characterised by a velocity depen-
dent increase in tonic stretch reflexes (muscle tone)
with exaggerated tendon jerks, resulting from hyper-
excitability of the stretch reflex, as one component of
the upper motoneuron syndrome” [2]. This definition
has been recently confirmed and updated by a Euro-
pean consensus, stating that “spasticity refers to veloc-
ity dependent stretch hyperreflexia as part of hyper-
resistance” [3]. These definitions should still be taken
with care when considering the measurement modal-
ity and procedure used. Indeed, Lance’s definition was
primarily derived from muscle activity observations,
while today clinical practices rely on the measure of
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an exaggerated force or torque response (e.g. a catch
angle). In addition, a continuous velocity-dependent
torque response has also been recently demonstrated
for the elbow joint by McPherson et al. [4]. Overall,
past the phenomenon definition, it remains unclear as
to which modality is appropriate to characterise spas-
tic responses.

Significance of spasticity and its assessment
Spasticity is a highly prevalent symptom in people
suffering a neurological injury, with estimates ranging
from 30% to 80% after stroke [5]. Upper limb spastic-
ity following a stroke affects a large number of indi-
viduals in the chronic phase [6] and is strongly corre-
lated with post-stroke pain [7] and limitation of pa-
tient’s engagement in rehabilitation [8, 9]. The socioe-
conomic burden for those with post-stroke spasticity
is estimated to be four times greater than for stroke
survivors without spasticity [10]. Therefore, effective
management of post-stroke spasticity remains a criti-
cal issue of importance in the field of neurological re-
habilitation [11]. However, measuring effectiveness of
treatments requires sensitive, valid and reliable assess-
ment tools.

The Modified Ashworth Scale (MAS) and Modified
Tardieu Scale (MTS) are the more commonly used
measures of spasticity in clinical practice [12]. These
measures have important limitations, especially the
limited ability to distinguish between spasticity — ve-
locity dependant and of neural origin, as per Lance’s
definition — on one hand and tone or stiffness — of
non-neural origin — on the other hand. The impor-
tance of this differentiation has been recently stressed
by a European consensus [3].

Specifically, the MAS rates the reaction of the as-
sessed muscle to stretch using a six point scale [13].
The measure evaluates the resistance torque at a sin-
gle, approximately defined stretching velocity, so it
cannot capture the velocity-dependent component of
spasticity. The MAS has also been shown to have
only moderate intra-rater and inter-rater reliabilities,
leading to questions regarding the overall validity of
this tool in the measurement of spasticity [14]. The
MTS [15] has been recommended as a more appropri-
ate measurement of spasticity [16]. Like the MAS, this
tool rates the reaction of the affected muscle using a
Likert scale from 0 — no resistance to 4 — unfati-
gable clonus. The primary difference between the two
measures is that the MTS explicitly considers velocity-
dependent characteristics by requiring the clinicians to
stretch the joint at two different velocities, “as slow as
possible” and “as fast as possible” [17]. However, the
MTS does not fully reflect the variation of the inten-
sity of the stretch induced by the velocity as the scale

is only based on the angles at which the muscle reac-
tion occurs. Its sensitivity is also limited by the ability
of the rater to evaluate the reflex torques accurately
and its inter-rater reliability is dependent on the ex-
perience of the clinician [15].

Technology assisted assessments
Given the importance of spasticity evaluation and its
relevance to motor impairment and rehabilitation, to-
gether with the stated limitations of the existing clini-
cal scales, many attempts have been made to offer effi-
cient and reliable technological solutions to this evalua-
tion. Two main classes of systems have been developed
since the late 1980s [18, 19]: passive instruments, where
the goal is to accurately measure the resistance force
and/or muscle activity at a given joint which is man-
ually stretched by a clinician; and active (i.e. robotic)
devices which produce a controlled movement of a spe-
cific joint at several possible velocities while measuring
the resistance force or muscle activity.

These techniques use a variety of different appara-
tus and propose a variety of different outcome mea-
sures but have often been individually evaluated, for
different populations, different joints and often rela-
tively low number of subjects, making it challenging
to define and compare their clinical relevance. Many
of these measures have not been adopted into clinical
practice, possibly due to the complexity of their ap-
paratus, amongst other factors. Indeed, studies have
found that perceived ease of use and perceived use-
fulness are strong predictors of clinician likelihood to
adopt such devices in practice [20]. It is to note that
despite the aforementioned limitations, the MAS and
MTS are simple and quick assessments to administer,
potentially explaining their predominance against in-
strumented measures with lower usability.

Although two recent dedicated reviews [21, 22] inves-
tigated robotic-assisted methods for spasticity, the re-
striction of their scope to robotic systems does not al-
low for a full picture and comparison of existing meth-
ods. A more complete picture of the field is provided
in a review of systematic reviews encompassing all as-
sessment methods [23]. This review shows the overall
limited evaluation of the existing assessments but does
not propose a specific categorisation — and thus com-
parison — of the methods used. Additionally, none of
these previous reviews address the question of the us-
ability of the assessment methods which is a critical
point for clinical adoption, especially in comparison to
the widely used existing clinical scales which have the
benefit of being cost-effective and easy to administer.

This systematic review thus proposes to identify ex-
isting technology-assisted methods aiming to assess
the level of spasticity. A classification based on the
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method characteristics is then proposed, allowing for
a usability comparison. Finally the psychometric prop-
erties of the different outcome measures are analysed.
The review scope encompasses any limb and joint (or
muscle) and any condition leading to spasticity, as the
underlying mechanism of spasticity and its manifes-
tation are expected to remain consistent across these
conditions.

Methodology
Search and screening
A systematic literature review search was performed
on the Medline, Embase and IEEEXplore databases.
The search query was constructed to identify papers
of which title or abstract contain at least one key-
word of each of the three following groups: 1)spasticity,
2)assessment and 3)technology. The keywords of each
group were defined as follows:
1 spastic* (spastic, spasticity), muscle tone, muscu-

lar tone, hyperton* (hypertonia, hypertonic, hy-
pertonicity);

2 assess* (assess, assessment), measure* (measure,
measurement), quanti* (quantify, quantification,
quantitative);

3 technolog* (technology, technological), instru-
ment* (instrument, instrumental, instrumented),
mechatronic, mechanical, muscle activity mea-
surement, electromyography, EMG, sEMG, iner-
tial measurement unit, IMU, force sensor, dy-
namometer, ergometer, robot* (robot, robotic,
robotics), kinematic* (kinematic, kinematics, kine-
matical).

Note that the key terms of group (1) deliberately in-
cluded terms that may not be specific to spasticity as
per Lance’s definition. These terms were included to
ensure to not exclude valid studies using an inappro-
priate terminology. The construct validity of each mea-
sure was then evaluated in a second time, as explained
below. The technology group (3) was constructed to
include any mechatronic and/or sensor based systems.

The search was restricted to papers published af-
ter January 2000 to exclude older results leveraging
outdated technology. Both journal articles and full-
text conference proceedings written in English were
included. Additional papers identified outside of the
search were also included.

Eligibility was assessed based on the paper abstract
to ensure that the reported study was specific to spas-
ticity, or more generally to muscle tone, and applied
to a neurologically injured population. Only papers
directly aiming at the assessment of spasticity were
considered. As such papers only reporting spastic-
ity treatments or management methods were not in-
cluded. Finally, it was ensured that the papers were us-

ing or proposing a technology-assisted measure. Typi-
cally, studies assessing psychometric properties of non-
instrumented clinical measures (such as MAS or MTS)
were excluded. Abstracts of identified papers were
then screened independently by two reviewers (XG and
RW) for eligibility. In case of disagreement, inclusion
decision was made by a third reviewer (VC).

The PRISMA methodology [24] was used to report
the literature review.

Data extraction and analysis
The full texts of the included papers were then anal-
ysed. The first objective was to characterise the spas-
ticity assessment method used (or proposed). This step
consisted of identifying the type of sensor(s) and de-
vice(s) used, the type of physiological measure(s), pro-
cedure, outcome measure and joint being assessed.
When multiple outcome measures were proposed in
the same study, only the one(s) claimed to be specific
to spasticity by the authors were reported. When a pa-
per presented several distinct assessment methodolo-
gies, these were considered independently. Conversely,
when several papers were relative to the same assess-
ment method, those were reported together.

The information extracted was used to populate a
first table and further used to provide a full picture of
technology-assisted assessments of spasticity.

The second step aimed at extracting, for each study,
the relevant psychometric properties of the assess-
ment and other information relative to its evalua-
tion with the targeted population. When a study used
more than one method, those were considered indepen-
dently. Methods only tested with non-neurologically
impaired populations were not considered at this stage.
Specifically, information were sought regarding:

• the targeted population;
• the spasticity severity of the targeted population

(in terms of a clinical score);
• the sample size, assessed here as number of limbs

tested and either belonging to the test population
or control (including own control);

and on the reporting of the following five psychometric
properties.
1 The construct validity, evaluating the specificity

of the measure based on Lance’s and the European
consensus definitions. Two aspects were sought for
evaluation: 1) is the measure (and/or procedure)
accounting for the velocity dependent aspect of
the phenomenon (independently of the type of the
outcome measure); and 2) is the measure (and/or
procedure) attempting to isolate the stretch reflex
from any voluntary muscle component and other
joint passive resistance? This was thus rated from
0 to 2.
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2 The discriminant validity, based on the existence
of a control group/limb and ability of the mea-
sure to discriminate between these groups. This
was rated as Significant, Conditionally Significant
(under specific conditions) or Non-Significant.

3 The clinical (concurrent) validity, based on its
correlation with the clinical measures reported
as a Kappa, Spearman or Pearson correlation
coefficients and rated from Very Weak to Very
Strong [25, 26].

4 The reliability, based on a rating of the repeata-
bility from Poor to Excellent (ICC [27]).

5 The sensitivity evaluation, reporting the Minimal
Detectable Change (MDC) or similar measures.

The information, when available, was used to pop-
ulate a second extraction table. This extraction was
performed by one of the authors (XG) and discussed
among all the authors in case of doubt.

Due to the heterogeneity of the data, no quality ap-
praisal of the studies was performed but this infor-
mation was further used to analyse how the differ-
ent assessment methods — and outcome measure(s)
— have been investigated along the different psycho-
metric properties.

For the assessment methods with a construct valid-
ity of two out of two (thus specifically evaluating spas-
ticity as a velocity-dependant increase of the stretch
reflex) a usability evaluation was performed. The ad-
ministration time, equipment cost and portability of
the equipment necessary to these methods were esti-
mated. The administration time was estimated by the
authors either based on the procedure description, the
required instrumentation (such as EMG sensors place-
ment or exoskeleton adjustment) and the number of
movements/actions required (see Appendix, Table 5).
The administration time was then classified as either:

• comparable administration time to a MAS or
MTS: less than 10 minutes;

• equivalent to a typical intervention session: 10 to
30 minutes ;

• length of an extended session: 30 to 60 minutes
or;

• longer than an extended session: more than 60
minutes.

The equipment cost was estimated using the cost of
a standard equivalent equipment (see Appendix, Ta-
ble 6) and classified as either:

• a disposable expense: less than $1,000 USD;
• an expense requiring a departmental funding:

$1,000 to $10,000 USD;
• an expense requiring an institutional funding:

$10,000 to $50,000 USD or;
• an expense requiring a grant or special funding:

more than $50,000 USD.

Portability was estimated based on the less portable
piece of equipment and classified as either:

• easily transportable (e.g. EMG sensors);
• transportable from room-to-room (e.g. Ultra-

Sound system on wheels) or;
• not movable (e.g. BIODEX system).

Results
The search conducted in May 2021 identified 491 pa-

pers and six were added from other sources by the au-
thors (see Figure 1), 310 papers were excluded based
on their abstract and 20 additional ones were excluded
after a full-text review, leading to a total of 124 papers
included in the analysis. During the screening phase,
there was an agreement among the two reviewers on
384 papers whereas 70 required an arbitration.

Available assessment methods
In total, 120 different assessments were identified. The
extraction table summarising the assessment method-
ologies presented in each paper is available as a sup-
plementary material (Additional file 1).

Physiological measures
Four categories of physiological measures — and their
combinations — used to produced the outcome mea-
sure were identified. They are summarised in Table 1.

Table 1 Definition of the physiological measures categories

Abbr Denotations Definitions
KI Kinematic A measure of the limb movement,

either position or velocity
MA Muscle Activity A measure proportional to the mus-

cle contraction intensity (e.g. EMG
measurement)

FT Force/Torque A measure of the force exerted by
the limb, or equivalent torque at a
joint, to resist a limb movement

MP Muscle Property A measure of the mechanical condi-
tion (e.g. stiffness) of a muscle

A majority of studies used Kinematic measures (KI,
N=105), then Muscle Activity measures (MA, N=83),
then Force/Torque (FT, N=64), and a few studies used
intrinsic Muscle Properties (MP, N=8) (see Figure 2-
a). The most common combinations were Kinematic
with Muscle Activity (N=63), and Kinematic with
Force/Torque (N=56).

Stretching methods
Studies were further categorised based on the type of
movement used defined in Table 2.

Most studies relied either on Manual stretching of
the limb (N=60) or on Controlled stretching move-
ments (N=45). Only a small number of studies (N=14)
relied on Voluntary movements. This last option has
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454 records after
duplicates removed

454 records screened

144 full-text articles
assessed for eligibility

124 studies included in
qualitative synthesis

118 studies included in
quantitative synthesis

310 records excluded

20 full-text articles ex-
cluded, with reasons

6 full-text excluded
(healthy subjects only)

491 records identified through
database searching

6 additional records identified
through other sources

Figure 1 PRISMA diagram of the literature review.

Table 2 Definition of the stretching methods categories

Abbr Denotations Definitions
M Manual Stretch The subject’s limb is manually

stretched by a practitioner
C Controlled Stretch The subject’s limb is stretched by a

mechatronic device controlling the
movement

V Voluntary Stretch The subject voluntarily controls
their limb movement without ex-
ternal intervention

NS No Stretch The measure is performed at static
pose(s) of the subject’s limb

the disadvantage of not providing a standard move-
ment velocity — and its variations — but has the ad-
vantage of being more directly representative of the
spasticity effect on patients function.

These stretches were applied at several different ve-
locities in 69 studies — either in a randomised or in-
creasing velocity order (N=48 and N=21 respectively)
— which demonstrate how most methods tackle the
velocity dependence aspect of spasticity. Still, in 44
studies, only one stretching velocity was used and 23
did not clearly report the number of velocities used or
didn’t use any stretching (NS).

Joints of application

The different methods were equally applied to the up-
per or lower limb joints (52% vs 48%) but much more
frequently to the more distal joints with only two stud-
ies relative to the shoulder and four to the hip (see Fig-

ure 2-c). Only four studies were applied to the fingers
joints.

Devices used
Ten categories of technological devices could be iden-
tified in the different studies. Most of the studies used
two or more types of devices. Fifty studies relied on
active systems, either a robotic end-effector system
(REE, N=34) or a robotic exoskeleton (REXO, N=16),
among which they were coupled with EMG measure-
ments in 23 cases. Electrical stimulation (STI) was
used in four studies. Passive orthoses (ORT) were used
to guide or stabilise the movement and measure either
kinematic or kinetic data in 20 cases.

Purely in terms of measurement devices, EMG is
the most commonly used system (N=83), followed by
goniometers (GON, N=26) and IMUs (N=17), dy-
namometers (DYN, N=8) and finally Ultra-Sound or
mechanomyography (US or MMG, N=7).

Outcome measures
Seventy-eight different outcome measures were identi-
fied with only a few recurrent ones and multiple stud-
ies reporting several outcome measures. The largest
category encompass the Force/Torque level outcomes
(N=51), either resistive torques measured in varying
conditions or the Force/Torque evolution over stretch-
ing angle or velocity. Thirty-six studies reported a
Muscle Activity level, 19 reported a catch angle, 16 the
presence of an EMG onset and 15 the Tonic Stretch
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Figure 2 Distributions of studies by a) types of measurement (some studies use more than one type of measurement); b) types of
stretch used and breakdown of measurements for the two main stretch categories; c) joint(s) on which the methods has been applied
to; and d) most commonly encountered outcome measures (some studies have several outcome measures). KI: Kinematic measure,
MA: Muscle Activity measure, FT: Force/Torque measure and MP: Muscle Property measure.

Reflex Threshold (TSRT), sometime with the asso-
ciated Tonic Stretch Reflex Slope (TSRS). Figure 2-
d presents the most commonly encountered measures
and a full list is available in the Additional file 1.
Among the variety of other outcome measures re-
ported, it is noted that six studies aimed at estimat-
ing a MAS score equivalent, either by reproducing the
MAS procedure using technological equipment or by
using machine learning techniques on a set of recorded
features.

Types of measurement

When comparing the main stretching categories (Fig-
ure 2-b), not surprisingly, all methods using Controlled

stretching relied on Kinematics measures — as it is
directly provided and controlled by the stretching sys-
tem. Quite naturally, Controlled methods also more
commonly relied on Force/Torque measurements than
Manual methods, as this measure can be directly pro-
vided by the mechatronics system. Instead Manual
methods tend to use Muscle Activity measures more
frequently as an alternative to Force/Torque.

Psychometric properties

The detailed data extraction table with the character-
istics of each study, and for each outcome measure,
is provided as a Supplementary material (Additional
file 2). Six studies [28, 29, 30, 31, 32, 33] were excluded
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from the psychometric properties analysis as they only
recruited healthy subjects.

There is quite a large variety of study designs, which
do not all aim at formally assessing the psychometric
properties of the used — or proposed — assessment
methods. As such, not surprisingly, no study reported
all the expected items and six studies reported four of
the five properties [34, 35, 36, 37, 38, 39]. When psy-
chometric items were reported, they also were com-
monly evaluated only for some of the outcome mea-
sures proposed.

Overall, more than half of the studies (N=76) pro-
posed or evaluated a method which scores less than
two on the construct validity criterion, showing that it
is either not velocity-dependent or do not attempt to
isolate the stretch reflex component.

For 42 studies, at least one outcome measure was
able to discriminate between the test and control pop-
ulations, whereas this discrimination was not possible,
or only under specific conditions, in 10 studies. 78 stud-
ies did not report any discriminant validity evaluation.

A strong or very strong correlation of the evaluated
measure with clinical measures of spasticity were found
in 28 studies, out of the 62 reporting such evaluation.
It is to note that in most of these studies (N=33) the
concurrent validity was evaluated against the MAS.
Given the limited properties and limited specificity of
the MAS, this raises the question of relevance of these
correlations.

The repeatability of the proposed measures was re-
ported in only 29 cases and was found excellent in 25
cases.

Sensitivity was evaluated in only three studies, either
using a Minimal Detectable Change (MDC), a Small-
est Real Difference (SRD) or a Smallest Detectable
Difference (SDD).

The targeted population was well specified in a large
majority of studies with only two studies missing
this information. A majority of studies applied to the
Stroke population (N=79), followed by CP population
(N=25) and SCI population (N=11). The spasticity
severity of the test group was provided in 108 studies.

Assessment methods comparison
In order to estimate which of the main assessment
method categories (defined in the previous section)
benefit from the more positive evaluation across the
different psychometric properties, Table 3 reports the
percentage of studies in each method, with what is
considered a good psychometric property: a fully valid
construct (= 2), a Significant discriminant validity, a
strong or very strong correlation with clinical scales,
an excellent repeatability and any evaluation of the
sensitivity.

None of the different assessment methods demon-
strate a good or even systematic validation across the
five psychometric properties. Among the methods re-
lying on Manual stretching, the ones using the larger
set of measurements (M-MA+KI+FT) have an over-
all better validation. The simpler approach (M-KI),
requiring the simpler equipment, has a good valida-
tion overall even if their Construct validity remains
low. Similarly, among methods relying on a Controlled
stretching, the ones with the larger set of measure-
ments (C-MA+KI+FT) demonstrate the best over-
all properties. Approaches relying on either Voluntary
movements (V-) or on a static measurement (NS-) have
a low construct validity score and generally suffer from
an absence of repeatability evaluation.

Outcome measures comparison
The same analysis was performed based on the studies
outcome measure(s). The results for the most com-
monly used measures are presented on Table 4.

A more detailed analysis accounting only for studies
reporting on a specific property is presented on Fig-
ure 3. When evaluated, most outcomes demonstrate
an excellent repeatability and a positive discriminant
validity. It is to note still, that the use of TSRT and the
presence of EMG onset are very rarely evaluated along
these properties. Overall, across the spectrum, only the
Force/Torque measure, either as a whole (i.e. resis-
tive) or isolating the neural component, and the Work
measure demonstrate good properties in a majority of
studies. This similar behaviour is not surprising, as
these two outcome measures are relatively similar, the
Work being the integration of the Force (or Torque)
along the stretching movement.

Only one study reported properties of a good level
across the first four psychometric properties (Addi-
tional file 1), and this for the MA level outcome mea-
sure when applied at the knee joint with subjects with
CP [38]. The same authors, in a different study with
the same population at the ankle, were the only ones
to also report good construct validity, discriminant va-
lidity and repeatability (but without assessing clinical
validity) [77]. This applied to the overall Work, specific
Neural Work and Torque outcome measures.

Usability analysis of valid approaches
Usability was evaluated and analysed for 54 studies
which specifically evaluated spasticity and so had a
Construct validity of 2/2.

Usability comparison by method approaches
Less than half of the studies’ procedures (N=19) could
be administered in less than 10 minutes, making them
comparable to the MAS or MTS. It is of note that most
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Table 3 Summary of the studies in the literature, categorised into the Manual (M), Controlled (C), Voluntary (V) and Static (NS)
approaches and type of measure. It shows the percentage of the studies in each category that showed a construct validity of 2 (out of
2), a significant discriminant validity, a greater than Strong correlation with a clinical measure, an Excellent repeatability and the
percentage of those that included a sensitivity evaluation. The table also reports the total sample size for each category as: number of
tested limbs (P), own control limbs (PC) and healthy subjects’ control limbs (HC); and the number of studies in each of the category.
Note that these results do not account for the individual sample size of each study and aggregate studies reporting a poor property and
studies not reporting it.

Stretch Measure Construct Discriminant Clinical Repeatability Sensitivity # limbs # References
(2/2) (Significant) (≥Strong) (Excellent) (Reported) (P/PC+HC)

M MA+KI 65% 4% 27% 19% 8% 453/45+22 26 [40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 17, 62,
63, 64]

MA+KI+FT 89% 33% 11% 33% 0% 259/0+78 9 [65, 66, 67, 68, 69, 70,
55, 38, 71]

KI+FT 13% 63% 13% 13% 0% 344/16+29 8 [41, 72, 73, 74, 75, 76,
77, 78]

KI 14% 57% 57% 57% 0% 119/19+93 7 [79, 35, 36, 37, 80, 81,
82]

MA 0% 33% 17% 17% 0% 242/41+40 6 [83, 84, 85, 86, 87, 88]
Other 33% 33% 0% 0% 0% 26/0+8 3 [89, 90, 91]

C KI+FT 36% 36% 23% 18% 5% 791/75+411 22 [92, 93, 94, 95, 96, 97,
98, 99, 34, 100, 101,
102, 103, 104, 105, 106,
107, 108, 109, 110, 111,
112]

MA+KI+FT 85% 54% 8% 31% 0% 268/0+163 13 [113, 114, 115, 116,
117, 118, 119, 120, 121,
122, 123, 124, 125]

MA+KI 67% 0% 0% 0% 0% 115/8+22 6 [126, 127, 128, 60, 129,
130]

KI 0% 0% 100% 100% 0% 46/46+192 1 [131]
V MA 0% 20% 20% 0% 0% 60/22+8 5 [132, 133, 134, 135,

136]
MA+KI 60% 40% 40% 0% 0% 80/34+37 5 [137, 59, 138, 139, 140]
Other 0% 33% 33% 0% 0% 80/80+124 3 [141, 142, 143]

NS MP 0% 83% 50% 0% 0% 257/153+0 6 [95, 95, 144, 145, 132,
146]

MA 0% 40% 20% 0% 0% 178/116+64 5 [147, 148, 70, 81, 146]
Other 0% 80% 0% 40% 0% 76/47+17 5 [39, 149, 150, 122, 96]

of these 19 studies were in the Manual Stretch method
category which generally required minimal time for
equipment setup. In contrast, the majority of studies
had an administration time as much as a typical inter-
vention session (10—30mins, N=21) or an extended
intervention session (30—60mins, N=14).

In terms of equipment cost, nearly half of the studies
(N=26) had a cost between $1,000 and $10,000 USD.
Meanwhile, 6 studies had a cost of $10,000—50,000
USD and 21 studies had a cost more than $50,000
USD, where most of these studies used a robotic de-
vice (REE or REXO) to perform Controlled stretch-
ing. A relatively low cost (less than $1,000 USD) was
only found in one study, which combined a muscu-
loskeletal model and Kinematic measurements from 3
IMUs during Manual stretching to predict the velocity-
dependent TSRT [79].

The portability analysis showed the assessment
equipment was not movable in nearly half of the stud-
ies (N=26). Only 11 studies used a device which could
be transportable from room-to-room, and 17 studies

(all in the Manual Stretch category) used easily trans-
portable equipment.

Usability comparison by outcome measures
In order to compare which validated assessment meth-
ods and their associated outcome measures have ad-
vantages in practicality, the usability for the most com-
monly used outcome measures (used in 10 or more
studies) is presented in Figure 4.

MA level approaches had an overall good usabil-
ity across administration time, equipment cost and
portability. More than half of the studies measuring
MA level have an administration time of less than
10mins, which is thus comparable to a MAS or MTS,
they require an equipment costing between $1,000 and
$10,000 USD and scored high on portability.

Overall, the good usability of MA level relied on sim-
ple equipment used (e.g. EMG) and a relatively small
number of Manual stretches in most of these studies.

Although TSRT demonstrated a similar performance
on equipment cost and portability as MA level, its ad-
ministration time is longer, more commonly of more
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Table 4 Summary of the studies in the literature evaluating the most common outcomes measures (used in 10 or more studies). It
shows the percentage of the studies for each of the outcome measures that showed a construct validity of 2 (out of 2), a significant
discriminant validity, a greater than Strong correlation with a clinical measure, an Excellent repeatability and the percentage of those
that included a sensitivity evaluation. The table also reports the total sample size for each outcome measure as: number of tested limbs
(P), own control limbs (PC) and healthy subjects’ control limbs (HC); and the number of studies in each category. Note that these
results do not account for the individual sample size of each study and aggregate studies reporting a poor property and studies not
reporting it.

Outcome
measure

Construct Discriminant Clinical Repeatability Sensitivity # limbs # References
(2/2) (Significant) (≥Strong) (Excellent) (Reported) (P/PC+HC)

MA level 54% 24% 14% 19% 3% 951/122+232 37 [127, 60, 113, 118, 123,
83, 84, 85, 86, 87, 88,
91, 40, 41, 49, 53, 55,
58, 59, 60, 17, 63, 64,
65, 67, 68, 70, 55, 38,
71, 136, 132, 134, 137,
59, 143, 70]

Catch angle 35% 6% 6% 47% 0% 364/50+250 17 [131, 114, 115, 118, 82,
73, 78, 47, 49, 57, 62,
63, 66, 67, 68, 55, 71]

FT (resistive) 47% 41% 18% 24% 0% 458/9+236 17 [93, 34, 101, 102, 103,
104, 105, 112, 119, 123,
90, 67, 68, 70, 55, 38,
143]

FT (neural) 88% 53% 18% 29% 6% 388/42+239 17 [94, 95, 96, 97, 98, 99,
116, 117, 118, 120, 121,
122, 124, 90, 80, 77, 70]

TSRT 100% 0% 21% 0% 7% 247/8+11 14 [126, 127, 129, 79, 42,
43, 46, 48, 50, 51, 52,
54, 61, 140]

EMG onset 62% 15% 15% 0% 0% 268/0+85 13 [127, 60, 130, 119, 120,
124, 56, 60, 17, 63, 66,
38, 134]

Work 70% 60% 20% 40% 0% 317/0+108 10 [106, 119, 123, 73, 77,
67, 68, 55, 38, 71]

than 30mins as it requires a larger number of stretches.
Indeed, a larger number of stretches is required to elicit
sufficient Dynamic Strectch Reflex Thresholds (DSRT)
data points to obtain a reliable TSRT value.

In contrast with MA level and TSRT, most FT (neu-
ral) studies had an equipment cost over $50,000 USD
and lacked equipment movability as these assessment
methods were generally performed on a robotic sys-
tem (REE or REXO). Additionally, more than half of
the FT (neural) studies required more than 10mins for
measurement.

Discussion
The diversity of outcome measures shows that there
is no clear agreement on efficient method for such as-
sessment. The psychometric properties of the different
measures are not well explored.

A very large spectrum of methods and outcome mea-
sures have been developed and used in studies with
various methodology approaches. This development
seems to be at the expense of limited formal evaluation
of the proposed methods. Many studies neglect the
evaluation of important psychometric properties of the
measures. This is evident for the sensitivity (present in
only three studies) and also repeatability which is not
evaluated in a majority of studies. Clinical validity is

more often present. If it appears important to provide a
benchmark against accepted scales, its significance re-
mains limited given the low specificity and inter/intra
rater properties of the MAS and MTS (the most fre-
quently encountered). This correlation cannot be con-
sidered alone to characterise an appropriate measure
of spasticity. It would thus appear more appropriate
to evaluate proposed methods against relatively well
established ones such as Muscle Activity approaches
(MA level) or ones properly isolating the stretch reflex
in Controlled stretches (FT neural).

Measures specificity to spasticity

The diversity of proposed methods and the limited
Construct validity (<2) in more than half the studies
show the limited specificity of the methods evaluated.
This is illustrated by the wide use of catch angles mea-
sures considered only at a single velocity, or the use
of a MAS equivalent, also known to not be velocity-
dependent. It was noted that, as suggested by McPher-
son et al. [4], catch angles may be used to construct a
valid outcome measure (representing the stretch-reflex
sensitivity) but only when their velocity dependence is
considered. This lack of specificity in the literature is in
agreement with a conclusion of a previous systematic
review which found that a “majority of studies rely on
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Figure 3 Response on the different psychometric properties for the the more commonly adopted outcome measures (in 10 or more
studies). Sensitivity being reported in only three studies is not presented. Note that this does account only for studies reporting the
given property and as such lead to a very inequal total number across the different properties (and different vertical scales).

methods that assess resistance to passive movement
rather than spasticity” [23].

Still, the importance of specificity might be relative
for clinical use. Typically, Botulinum toxin type A in-
jection decisions can be made on the basis of static
postures [151] or MAS scores [152] to address both hy-
pertonicity and spasticity all-together. As such, when a
specific measure is not required, it appears that simple
instrumented methods relying on a manual stretching
and a simple kinematic measurement [80, 37, 36, 35,
81, 79, 82] could be favoured.

Lack of repeatability and sensitivity evaluation

Overall, most outcome measures demonstrate an excel-
lent repeatability when reported but with the notable
exception of the TSRT and the presence of EMG onset
(Figure 3). This absence of repeatability evaluation is
especially problematic given that these two measures
are the ones with the higher construct validity overall

— because they take advantage of a Muscle Activity
measure — and are such very relevant approaches.

In general, repeatability, which is a fundamental
property relatively straightforward to evaluate is very
much lacking for most methods and outcome measures,
and care should be taken to fill in this gap.

The sensitivity of the outcome measures is even more
critically lacking from the literature, with only three
studies proposing such evaluation. This confirms and
extend a previous finding about robotic assessments
of spasticity by van der Velden et al. [22]. The rec-
ommendation of the authors to invest more effort “in
studying diagnostic accuracy” and its “added value for
clinical care” can be extended to all existing instru-
mented measures.

Usability and clinical implications
One of the main objectives of the different methodol-
ogy developments in the literature is to provide alter-
natives to the MAS and MTS scales in clinical practice.
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Figure 4 Usability analysis on the the equipment cost, administration time and portability for the more commonly adopted outcome
measures.

These scales are criticised for their limited repeatabil-
ity, specificity and sensitivity but have the major ad-
vantage of not requiring a specific equipment and be
quick to administer with minimal training. As such,
usability considerations are important when looking
at possible alternatives.

A number of existing methods address this issue and
have an estimated administration time of less than 10
minutes. Those mostly include instrumented Manual
stretching methods measuring a Muscle Activity re-
action and the Kinematics (e.g. [55]) or Force/Torque
reaction (e.g. [77]). Lower cost alternatives relying only
on a kinematic measure, provided by either a goniome-
ter [80] or an IMU [35, 36, 79] have been proposed but
have reported relatively poor psychometric properties,
except for [79] and [80] (see Additional file 1).

It is also to note that, if TSRT is an interesting
approach quite well explored, it can only be recom-
mended as a comparison point in research studies as
it requires a large number of stretches to be efficient,
thus increasing its administration time.

Another, less specific alternative to the MAS and
MTS are static methods not relying on any stretching
movements (NS-) and measuring either intrinsic mus-
cle properties using Ultra-Sound [132, 144, 145, 146]
or measuring the H-reflex using EMG and electrical
stimulation [70, 81]. These approaches, past their low
construct validity, have a good discriminant validity

and a moderate to very strong clinical validity, but no
repeatability nor sensibility evaluation.

Overall, Muscle Activity measures (using EMG) of
Manual stretches seems to constitute the go-to alter-
native to existing clinical scales, given their short ad-
ministration time but also relative low-cost (<$1,000
for most of them). These Manual methods tend to
have a lower equipment cost than their Controlled
counterparts which require a robotic system but this
additional cost is often defrayed given that when
robotic systems are used for spasticity assessment,
this is generally not their only — or even primary —
use, as discussed in [21]. In addition, Muscle Activ-
ity based methods require an appropriate placement
of EMG electrodes which may require specific expe-
rience. The choice between Controlled-Torque meth-
ods and Manual-Muscle Activity one is thus still open
depending on the equipment available and clinicians
experience.

Limitations
The diversity of outcome measures and variety of ob-
jectives of the studies make it difficult to draw specific
conclusions. As such, one limitation of this review is
the lack of analysis for every different joint and pathol-
ogy. It is clear that practical considerations may not
allow a straightforward translation of one method from
one joint to another (e.g. sEMG placement or robotic
devices fitting and adaption to the joints morphology)
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but such analysis would require a more narrow scope.
Similarly regarding the different pathologies, the as-
sessment needs, and limbs presentation, might vary
slightly for the different pathologies and so affect each
method differently.

In addition, the construct validity considered in this
review intentionally does not characterise the physi-
ological mechanisms of spasticity specifically: no dis-
tinction is made between methods estimating an in-
creased sensitivity of the stretch reflex and methods
estimating an increase of the reaction amplitude. This
approach thus assumes that both effects may exist and
can potentially characterise spasticity. This is expected
to be aligned with current clinical definitions of spas-
ticity.

The usability of the different methods in clinical
practice is based on estimations of the equipment cost
and administration time. It is acknowledged that the
cost does not include the expertise that may be re-
quired by some methods and that the cost of the equip-
ment itself can significantly vary. As such this remains
only an approximation used for comparisons between
methods. Similarly, the estimated administration time
can highly depend on the patient presentation but also
expertise of the assessor. It is only relevant here as
a comparison between methods and against the com-
monly used clinical scales, MAS and MTS, which have
the advantage of being fast to administer.

Finally, the choice to include conference proceedings
within the scope appeared important given the im-
portance of such publications in the engineering field
which contributes to the developments of the assess-
ment methods. Nevertheless, this may have introduced
a bias when analysing the validation of the methods,
given that some preliminary publication may not pro-
vide a full validation, complemented in a different pub-
lication. This approach also tends to aggregate studies
which aim to introduce new evaluation methods with
ones focusing on a more careful analysis of the psycho-
metric properties.

Conclusions
The review found a large variety of technology assisted
methods and associated outcome measures to assess
spasticity. These methods generally lack systematic
evaluation of their psychometric properties. It thus ap-
pears that some consolidation of knowledge around ex-
isting approaches is required and that no ready-to-use
alternative to existing clinical scales (MAS and MTS)
is yet fully validated. Nevertheless, methods measuring
a Muscle Activity reaction to manual stretches appear
as promising practical method to be investigated fur-
ther. Similarly, and when robotic systems are readily
available, measures relying on a specific Torque (or

Work) reaction to a controlled stretching can also be
recommended.
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